芯片下表面焊接连接,上表面采用载银硅树脂连接,以进一步降低热机械应力。栅极端子与聚酰亚胺柔性电路板连接。通过空气实现散热器与环境间的电气绝缘。芯片两侧的基板表面为翅片状热沉的连接提供了平台,可使用介电流体(如空气)进行冷却,该PCoB双面风冷模块具有与液冷等效的散热性能。研究表明,采用该封装的1200V/50ASiC肖特基二极管在空气流速为15CFM的条件下测试得到模块结到环境的热阻只为0.5℃/W。在没有散热措施时,结到环境的热阻也低于5℃/W。而对于类似大小的芯片,采用25mil的AlN陶瓷基板和12mil的镀镍铜底板封装的传统功率模块的结壳热阻已达到约0.4℃/W。将该模块通过导热脂连接在液冷散热板上,结到冷却液体的热阻为0.6~1℃/W。表明该PCoB双面空冷模块具有与传统液冷模块相当的热性能。动态测试IGBT自动化设备可提供高效的数据采集和分析功能。重庆一体化网带式气氛烤炉
由CMC制成的垫片可以传导电流、传递热量、保证电气绝缘距离,并具有与芯片和基板相匹配的可调节热膨胀系数(CTE)。交错平面封装方法通过增加相邻芯片间的距离来减小等效耦合热阻,拉长热耦合的传热路径,具有均匀且较小的热耦合效应。这种封装方式利用了3D封装结构灵活性的优势,增大传热距离,但没有增大功率模块的尺寸。具有低热耦合效应、更均匀的温度分布和出色的热性能。在相同的耗散热和散热条件下,与传统芯片布局封装模块至大结温155.8℃,封装内部至大温差12.3℃相比,交错布局封装至大结温为135.2℃,封装内部至大温差只3.4℃。显然,交错封装模块的温度分布更加均匀,可有效降低封装热阻和芯片间的热耦合不均匀程度。江苏真空灌胶自动线动态参数测试中,IGBT自动化设备能够对产品的响应速度和耐压能力进行精确评估。
微通道散热器采用低温共烧陶瓷(LTCC)制成,由于press-pack封装没有内部绝缘,热沉的引入增大了回路的寄生电感,上下两侧的微通道散热器设计可提供足够的散热能力,同时外形上厚度较薄可降低功率回路的电感。微通道散热器的电气回路和冷却回路分离,可以使用非介电流体进行冷却。虽然LTCC的导热性不如金属和AlN陶瓷好,但仿真结果表明,在总热耗散为60W,采用LTCC微通道热沉水冷散热时,SiC芯片至大结温只为85℃,并联芯片间的至大结温差小于0.9℃,并联芯片的结温分布比较均匀。结到热沉热阻为0.2℃/W,热沉至高温度为73℃,热沉到冷却剂的热阻为0.8℃/W。
高电压等级的SiC器件电场强度达到Si器件的10倍以上。因此,针对高压功率器件的封装需要特殊的设计以满足高压绝缘的要求,如需要开发在高电场环境下仍具有高电压绝缘强度和稳定性的绝缘灌封材料,以隔离水汽、污染物等外界环境。另外,针对灌封过程存在气泡的问题,现有灌封工艺还需要进一步完善。SiC功率器件可以承受更高的工作结温,降低对外部冷却器件的要求,缩小封装器件的体积,使得封装器件更加轻质高效。然而,缺乏适合的高温封装技术体系成为限制SiC器件充分发挥其潜力的至大因素,特别是对于高压大电流应用需求的系统。对于传统硅基功率器件,单热管理部分就占到整个器件封装系统成本的三分之一以上。但随着SiC技术的进步,SiC器件的高温运行能力所带来的优势足以弥补现阶段SiC的成本问题。在自动贴片过程中,IGBT自动化设备能够高效地完成芯片的贴装工作。
汽车IGBT模块要做哪些测试验证?汽车IGBT模块对产品性能和质量的要求要明显高于消费和工控领域,因此车规认证成为了汽车IGBT模块市场的重要壁垒,一般来说,车规级IGBT需要2年左右的车型导入周期。汽车IGBT模块测试标准主要参照AEC-Q101和AQG-324,同时车企会根据自己的车型特点提出相应的要求,主要测试方法包括:参数测试、ESD测试、绝缘耐压、机械振动、机械冲击、高温老化、低温老化、温度循环、温度冲击、UHAST(高温高湿无偏压)、HTRB(高温反偏)、HTGB(高温删偏)、H3TRB/HAST(高温高湿反偏)、功率循环、可焊性。动态测试IGBT自动化设备能够模拟真实工作环境下的各种负载情况。浙江非标无功老化测试设备
通过激光打标,IGBT自动化设备能够在模块表面添加必要的标识和信息。重庆一体化网带式气氛烤炉
从单面散热器件封装结构来看,键合线连接类器件封装各层从上至下主要由顶盖、外壳、空气层、灌封剂、键合线(金属带)、芯片、芯片焊料、DBC(DBA)基板、基板焊料和底板组成。键合线连接技术较为成熟、成本低且操作上具有灵活性,被普遍用于芯片电极与功率端子的连接。但键合线连接需要在基板上预留出额外的键合面积用于电流传输,因此降低了功率密度。基板与键合线形成的电流回路也会产生较大的寄生电感、电阻以及更高的开关噪音和功率损耗,加剧芯片温升。重庆一体化网带式气氛烤炉